Wednesday, July 31, 2019

Modernization theory and Dependency theory Essay

Skidmore and Smith present two theories, Modernization theory and Dependency theory. Modernization theory is that positive material growth yields positive social equality. Dependency theory states that a dependent economy yields or brings social inequality, which in turn can lead to political authoritarianism. Skidmore and Smith state that dependency theory distorts modernizations predicted outcomes. Mercantilism is a form of dependency. The social, economic and political outcomes from Modernization seem positive. Socially, the transition from a rural to an urban society will bring a change in values. People would begin to participate in voluntary organizations which only an authentic democracy requires. A middle class would emerge to play a progressive and economic role in society. This theory shows that they weren’t different just behind. Skidmore and Smith’s modernization theory is used to describe the nature of development. The social, economic and political outcomes of a dependant economy are negative. Social inequality will appear and the different classes will become further and further apart. Economically Latin America would depend on foreign markets, which â€Å"during the 20’s a depression occurred.† Economically Latin America exported raw materials and imported finished goods. This leads to growth without development. Economic dependency leads to a political authoritarianism. The causative variable for these outcomes that Skidmore and Smith stated is economic dependency. There are two forms of economic dependency that Skidmore and Smith explain. They are mercantilism, the colonial period, and the ECLA thesis, post 1880 period. Mercantilism is a dictated economic policy that emerged during the colonial period. Mercantilism required colonies to produce raw materials for the mother country. The mother country would supply the colonies with finished products in return. This arrangement was geared toward the economic enrichment of the mother country at the expense of the colonies. The ECLA thesis developed by Presbish, it states that overtime the prices of finished products rise faster than the prices of  primary products, raw materials. The ECLA thesis explains the nature of dependency during the post-independent, 1880 period to the present.

Tuesday, July 30, 2019

Introduction To The Solar System Environmental Sciences Essay

A. This essay will briefly depict the planets and how they relate to the planet Earth. The surface and interior geology, the ambiance, and other general belongingss will demo how the other planets are non unlike the Earth. B. How do the alone features of each major solar system organic structure comparison with the planet Earth chiefly the mass and denseness, and the composing? 2. The Planets & A ; Other Objects. The charted parts of the Solar System consist of the Sun, four tellurian inner planets, an star-shaped belt composed of little bouldery organic structures, four gas giant outer planets, and a 2nd belt, called the Kuiper belt, composed of icy objects. Beyond the Kuiper belt is conjectural Oort cloud. The interior Solar System is the traditional name for the part consisting the tellurian planets and asteroids. Composed chiefly of silicates and metals, the objects of the inner Solar System crowd really closely to the Sun ; the radius of this full part is shorter than the distance between Jupiter and Saturn. The four inner or tellurian planets have dense, bouldery composings, few or no Moons, and no pealing systems. They are composed mostly of minerals with high runing points, such as the silicates which form their solid crusts and semi-liquid mantles, and metals such as Fe and Ni, which form their nucleuss. Three of the four inner planets ( Venus, Ear th and Mars ) have important ambiances ; all have impact craters and tectonic surface characteristics such as rift vales and vents. Our investigation, the ESP begins the geographic expedition of the solar system with the 3rd planet from the Sun, the Earth and the 5th largest in our solar system. Astronomers normally measure distances within the Solar System in astronomical units ( AU ) . One AU is the approximative distance between the Earth and the Sun or approximately 149,598,000 kilometers ( 93,000,000 myocardial infarction ) . A. The Earth. The mass of the Earth is 5.98 E24 kilogram with a average denseness of 5,520 kg/m3 and the densest of any planet in the solar system. Earth ‘s diameter is merely a few 100 kilometres larger than that of Venus, and considered our sister planet. Earth is the largest of the interior planets, the lone one planet known to hold current geological activity, although there are Moons of Jupiter and Saturn that have seismal activity, and the lone planet known to hold life. Its liquid hydrosphere is alone among the tellurian planets, and it is besides the lone planet where home base tectonics has been observed, unlike Venus where there is no grounds of home base tectonics. Earth ‘s ambiance is radically different from those of the other planets, holding been altered by the presence of life ( in two O bring forthing events ) to incorporate 21 % free O. It has one orbiter, the Moon, the lone big orbiter of a tellurian planet in the Solar System so big as compared to it à ¢â‚¬Ëœs planet. No other moon-planet has this size ratio. The four seasons are a consequence of Earth ‘s axis of rotary motion being tilted 23.45 grades with regard to the plane of Earth ‘s orbit around the Sun. During portion of the twelvemonth, the Northern hemisphere is tilted toward the Sun and the southern hemisphere is tilted off, bring forthing summer in the North and winter in the South. Six months subsequently, the state of affairs is reversed. During March and September, when spring and autumn Begin in the Northern hemisphere, both hemispheres receive about equal sums of solar light. Earth ‘s planetary ocean, which covers about 70 per centum of the planet ‘s surface, has an mean deepness of about 4 kilometers ( 2.5 stat mis ) . Fresh H2O exists in the liquid stage merely within a narrow temperature span, 32 to 212 grades Fahrenheit ( 0 to 100 grades Celsius ) . The presence and distribution of H2O vapour in the ambiance is responsible for much of Earth ‘s conditions. The Earth ‘s rapid rotary motion and run nickel-iron nucleus create the magnetic field which prevents the solar air current from making the surface ( the solar air current is a watercourse of charged atoms continuously ejected from the Sun. ) The Earth ‘s magnetic field does non melt off into infinite, but has definite boundaries. When charged atoms from the solar air current become trapped in Earth ‘s magnetic field, they collide with air molecules above our planet ‘s magnetic poles. These air molecules so begin to glow, and are known as the dawn — the northern and southern visible radiations. Earth ‘s geosphere, which includes the crust ( both continental and Oceanic ) and the upper mantle, is divided into immense home bases that are invariably traveling, and the motion is accurately determined via wireless telescopes from a stationary point such as a star. Earthquakes result when home bases grind past one another, sit up over one another, colli de to do mountains, or split and separate. The theory of gesture of the big home bases of the geosphere is known as home base tectonics. Developed within the last 40 old ages, this account has unified the consequences of centuries of survey of our planet. The Earth ‘s atmosphere consists of 78 per centum N, 21 per centum O and 1 per centum Ar and other hint ingredients. The atmosphere affects Earth ‘s long-run clime and short-run local conditions, shields us from much of the harmful radiation coming from the Sun and protects us from meteors every bit good, most of which burn up before they can strike the surface as meteorites. Before the ESP leaves the immediate locality of the Earth, ESP will get down the journey get downing with Earth ‘s Moon about 250,000 stat mis off. B. The Moon. The Earth ‘s Moon provides a more liveable planet by chairing our place planet ‘s wobble on its axis, taking to a comparatively stable clime, and making a beat that has guided worlds for 1000s of old ages. The Moon was probably formed after a Mars-sized organic structure collided with Earth about 4.5 billion old ages ago, and the ensuing dust accumulated ( or accreted ) to organize our natural orbiter. The freshly formed Moon was in a liquefied province. Within about 100 million old ages, most of the planetary â€Å" magma ocean † had crystallized, with less dense stones drifting upward and finally organizing the lunar crust. The Moon ‘s surface shows four important impact constructions and are used to day of the month objects on the Moon ; are called the Nectaris and Imbrium basins and the craters Eratosthenes and Copernicus. The Moon was foremost visited by the USSR ‘s Luna 1 and Luna 2 in 1959. These were followed by a figure of U.S. and Soviet robotic ballistic capsule. The U.S. sent three categories of robotic missions to fix the manner for human geographic expedition, the Rangers ( 1961-1965 ) were impact investigations, the Lunar Orbiters ( 1966-1967 ) mapped the surface to happen landing sites and the Surveyors ( 1966-1968 ) were soft Landers. The first human landing on the Moon was on 20 July 1969. During the Apollo missions of 1969-1972, 12 American spacemans walked on the Moon and used a Lunar Roving Vehicle to go on the surface to look into dirt mechanics, meteoroids, lunar ranging, magnetic Fieldss and the solar air current. The Apollo spacemans brought back 382 kilogram ( 842 lbs ) of stone and dirt to Earth for survey. The Moon has no internally generated magnetic field, although countries of magnetic attraction are preserved in the lunar crust, but how this occurred remains a enigma to scientific discipline. The early Moon appears non to hold had the right conditions to develop an internal dynamo, the mechanism for planetary magnetic Fieldss for the tellurian planets ; so an iron-core did non organize or hold the ability for gesture. In retrospect, no magnetic field may be a good thing as possibly there would be some interactions between the Earth ‘s magnetic filed and the Moons, when sing the unnatural size ratio between these organic structures. With no ambiance to hinder impacts, a steady rain of asteroids, meteoroids and comets strike the surface. Over one million millions of old ages, the surface has been ground up into fragments runing from immense bowlders to pulverize. About the full Moon is covered by a rubble heap of grey, powdered dust and bouldery dust called the lunar regolith. Beneath the regolith is a part of fractured bedrock referred to as the megaregolith. The ESP now leaves the Earth to travel toward the Sun and see the 2nd cupboard to the Sun, Venus our sister planet. C. Venus. From the Earth, the distance to Venus is about 23 million stat mis, and 0.723 AU from the Sun. The orbital period of Venus is about 225 Earth yearss long, while the planet ‘s sidereal rotary motion period is 243 Earth yearss, doing a Venus solar twenty-four hours about 117 Earth yearss long. Venus has no natural orbiters. The mass of Venus is 4.87 E24 kilogram and stopping point in size to Earth ( 0.815 Earth multitudes ) and, like Earth, has a thick silicate mantle around an Fe nucleus, a significant ambiance and grounds of internal geological activity. Because of the similar silicate mantle around an Fe corer, the denseness is non unlike the Earth ‘s at 5,250 kg/m2. The slow rotary motion of Venus can non bring forth a magnetic field similar to Earth ‘s, though its Fe nucleus is similar to that of the Earth and about 3,000 kilometers ( 1,900 stat mis ) in radius. Venus rotates retrograde ( east to west ) compared with Earth ‘s ( west to east ) rota ry motion. Seen from Venus, the Sun would lift in the West and set in the E. Current thought suggests that Venus was wholly resurfaced by volcanic activity 300 to 500 million old ages ago. More than 1,000 vents or volcanic centres larger than 20 kilometer ( 12 stat mis ) in diameter dot the surface. Volcanic flows have produced long, channels widening for 100s of kilometres. Venus has two big upland countries: Ishtar Terra, about the size of Australia, in the North Polar Region ; and Aphrodite Terra, about the size of South America, straddling the equator and widening for about 10,000 kilometers ( 6,000 stat mis ) . Maxwell Montes, the highest mountain on Venus and comparable to Mount Everest on Earth, is at the eastern border of Ishtar Terra. No unequivocal grounds of current geological activity has been detected on Venus, but as mentioned it has no magnetic field that would forestall depletion of its significant ambiance, which suggests that its ambiance is on a regular basis replenished by volcanic eruptions. Venus ‘ ambiance consists chiefly of C dioxide, with clouds of sulphuric acerb droplets with hint sums of H2O detected in the ambiance ( 96 % C dioxide, 3 % N, and 0.1 % H2O vapour. ) The ambiance is much drier than Earth and 90 times as dense. It is the hottest planet, with surface temperatures over 400 A °C, most likely due to the sum of nursery gases in the ambiance. The midst atmosphere traps the Sun ‘s heat, ensuing in surface temperatures higher than 880 grades Fahrenheit ( 471 grades Celsius ) . Probes that have landed on Venus survived merely a few hours before being destroyed by the unbelievable temperatures. Sulfur compounds are abundant in Venus ‘ clouds. The caustic chemical science and dense, traveling atmosphere do important surface weathering and eroding. Atmospheric lightning explosions were confirmed in 2007 by the European Venus Express satellite. On Earth, Jupiter and Saturn, lightning is associated with H2O clouds, but on Venus, it is associate d with clouds of sulphuric acid. As we leave the Venusian orbit, Earth ‘s investigation ESP continues toward the Sun and onward Mercury. D. Mercury. The closest planet to the Sun and the smallest planet ( 0.055 Earth multitudes ) , Mercury is 0.387 Gold from the Sun. Mercury has no natural orbiters, and its mass is 3.30 E23 kilogram with an mean denseness of 5,420 kg/m3. The similarity of the bouldery tellurian planets is evident. Mercury ‘s surface resembles that of Earth ‘s Moon, scarred by many impact craters ensuing from hits with meteoroids and comets. While there are countries of smooth terrain, there are besides scarps or drops, some 100s of stat mis long and surging up to a stat mi high, formed by contraction of the crust. Mercury is the 2nd densest planet after Earth, with a big metallic nucleus holding a radius of 1,800 to 1,900 kilometers ( 1,100 to 1,200 stat mis ) , approximately 75 per centum of the planet ‘s radius ( Earth ‘s nucleus is many times smaller compared to the planet ‘s diameter ) . In 2007, research workers utilizing ground-based radio detection and rangings to analyze the nucleus found grounds that it is molten ( liquid ) . Mercury ‘s outer shell, comparable to Earth ‘s outer shell ( called the mantle ) , is merely 500 to 600 kilometers ( 300 to 400 stat mis ) midst. The lone known geological characteristics besides impact craters are â€Å" wrinkle-ridges † , likely produced by a period of contraction early in its history. The Caloris Basin, one of the largest characteristics on Mercury, is about 1,550 kilometers ( 960 stat mis ) in diameter. It was the consequence of a possible star-shaped impact on the planet ‘s surface early in the sola r system ‘s history. Mercury ‘s about negligible atmosphere consists of atoms blasted off its surface by the solar air current. Though Mercury ‘s magnetic field has merely 1 per centum the strength of Earth ‘s, the field is really active. The magnetic field in the solar air current creates intense magnetic twisters that channel the fast, hot solar air current plasma down to the surface. When these ions strike the surface, they knock off impersonal atoms and direct them high into the sky where other procedures may fling them back to the surface or speed up them off from Mercury. As we leave Mercury before heading out to the deepest parts of the solar system, the ESP will do a flyover of the Sun, as the voyager investigations did around Jupiter and Saturn to increase the speed. E. Our Sun. The chief constituent of the Solar System is the Sun that contains 99.86 % of the system ‘s known mass and dominates it gravitationally. Jupiter and Saturn, the Sun ‘s two largest revolving organic structures, account for more than 90 % of the system ‘s staying mass. Most big objects in orbit around the Sun prevarication near the plane of Earth ‘s orbit, known as the ecliptic. The planets are really near to the ecliptic while comets and Kuiper belt objects are normally at significantly greater angles to it. The orbits of the planets are about round, but many comets, asteroids and objects of the Kuiper belt follow highly-elliptical orbits. The investigation ESP circles the Sun picking up speed to get down the ocean trip to Mars once more go throughing the tellurian planets. F. The Red Planet, Mars. Mars is smaller than Earth and Venus ( 0.107 Earth multitudes ) has a mass of 6.42 E23 kilogram and a average denseness of 3,940 kg/m3 ( lower than that of the other tellurian planets, ) and is 1.524 Gold from the Sun. Mars is a cold desert-like universe similar to our Southwestern States, and has the same sum of dry land. Like Earth, Mars has seasons, polar ice caps, vents, canons and conditions, but its ambiance is excessively thin for liquid H2O to be for long on the surface. There are marks of ancient inundations on Mars, but grounds for H2O now exists chiefly in icy dirt and thin clouds. Mars has two bantam natural orbiters Deimos and Phobos thought to be captured asteroids. Mars experiences seasons because of the joust of its rotational axis ( in relation to the plane of its orbit ) . Mars ‘ orbit is somewhat egg-shaped, so its distance to the Sun alterations, impacting the Martian seasons that last longer than those of Earth. The polar ice caps o n Mars grow and recede with the seasons ; layered countries near the poles suggest that the planet ‘s clime has changed more than one time. Mars is a bouldery organic structure about half the size of Earth. As with the other tellurian planets ( Mercury, Venus and Earth ) the surface of Mars has been altered by volcanism, impacts, crustal motion, and atmospheric effects such as dust storms. Volcanism in the Highlandss and fields was active more than 3 billion old ages ago, but some of the elephantine shield vents are younger, holding formed between 1 and 2 billion old ages ago. Mars has the largest volcanic mountain in the solar system, Olympus Mons, every bit good as a dramatic equatorial canon system, Valles Marineris. Mars has no planetary magnetic field, but NASA ‘s Mars Global Surveyor satellite found that countries of the Martian crust in the southern hemisphere are extremely magnetized. Obviously, these are hints of a magnetic field that remain in the planet ‘s crust from about 4 billion old ages ago. Red planets frequently appears ruddy due to a combination of the fact that its surface is comprised of iron-rich minerals that rust ( or oxidise ) and that the dust made of these minerals is kicked up into the ambiance, giving the ambiance a ruddy chromaticity every bit good. Mars possesses an ambiance of largely carbon dioxide ( seems like a natural inclination of the tellurian planets ) , and other gases ( nitrogen 3 % , and argon 1.6 % . ) The thin ambiance on Mars does non let liquid H2O to be at the surface for long, and the measure of H2O required to carve Mars ‘ great channels and inundation fields is non obvious today. Unraveling the narrative of H2O on Mars is of import to unlocking its clime history, which will assist us understand the development of all the planets. Water is believed to be an indispensable ingredient for life ; grounds of past or present H2O on Mars is expected to keep hints about whether Red planets could of all time hold been a home ground for life. In drumhead, there is grounds and good scientific discipline that big measures of H2O may still be present below the surface. Scientists believe that Mars experienced immense inundations about 3.5 billion old ages ago, though it is non cognize where the antediluvian inundation H2O came from, how long it lasted or where it went, recent missions to Red planets have uncovered exciting grounds. In 2002, NASA ‘s Mars Odyssey orbiter detected hydrogen-rich polar sedimentations, bespeaking big measures of H2O ice near to the surface. Further observations found H in other countries as good. If H2O ice permeated the full planet, Mars could hold significant subsurface beds of frozen H2O, and if true, the long-run colonisation of Mars is likely. In 2004, the Mars Exploration Rover named Opportunity found constructions and minerals bespeaking that liquid H2O was one time present at its set downing site. The wanderer ‘s twin, Spirit, besides found the signature of ancient H2O near its landing site halfway around Mars from Opportunity ‘s location. Recently, in August 2012, the investigation Curiosity ma de another surface landing in a crater and being the first nuclear-powered investigation. Leaving Mar ‘s orbit and the tellurian planets, ESP moves farther from the Sun to research the left-over remains from the formation of the solar system, the Asteroid belt. G. The Asteroids Belt. These little Solar System organic structures are largely composed of bouldery and metallic non-volatile minerals. Tens of 1000s of these â€Å" minor planets and little bouldery organic structures † are gathered in the chief asteroid belt, a huge annular ring between the orbits of Mars and Jupiter. Asteroids that base on balls near to Earth are called Near-Earth Objects ( NEOs ) . The chief asteroid belt occupies the orbit between Mars and Jupiter, and is between 2.3 and 3.3 AU from the Sun. It is thought to be leftovers from the Solar System ‘s formation that failed to blend because of the gravitative intervention of Jupiter. Asteroids scope in size from 100s of kilometres across to microscopic. Despite this, the entire mass of the chief belt is improbable to be more than a thousandth of that of the Earth. The chief belt is really sparsely populated ; spacecraft routinely pass through without incident. Asteroids with diameters between 10 and 10-4 m are called meteoroids. Asteroid groups in the chief belt are divided into groups and households based on their orbital features. Asteroid Moons are asteroids that orbit larger asteroids. They are non as clearly distinguished as planetal Moons, sometimes being about every bit big as their spouses. The asteroid belt besides contains main-belt comets which may hold been the beginning of Earth ‘s H2O. The interior Solar System is besides dusted with knave asteroids, many of which cross the orbits of the interior planets. The three wide composing categories of asteroids are C- , S- and M-types. The C-type asteroids ( carbonous ) are most common, and likely consist of clay and silicate stones and are dark in visual aspect. C-type asteroids are among the most ancient objects in our solar system. The S-types ( silicaceous ) are made up of silicate ( stony ) stuffs and nickel-iron. M-types ( metallic ) are made up of nickel-iron. The asteroids ‘ compositional differences are related to how far from the Sun they formed. Some experient high temperatures after they formed and partially melted, with Fe sinking to the centre and coercing basaltic ( volcanic ) lava to the surface. One such asteroid, Vesta, survives to this twenty-four hours. Ceres is 2.77 Gold from the Sun, is the largest organic structure in the asteroid belt, and considered a dwarf planet. It has a diameter of somewhat less than 1000 kilometer, big plenty for its ain gravitation to draw it into a spherical form. Ceres was considered a p lanet when it was discovered in the nineteenth century, but was reclassified as an asteroid in the 1850s as farther observation revealed extra asteroids. It was once more reclassified in 2006 as a dwarf planet along with Pluto. Leaving the left-over debris of the Asteroid belt ESP now begins ‘s really long journeys as did the Voyager, and Cassini investigations and see the four outer planets, or gas giants ( sometimes called Jovian planets ) , and jointly do up 99 per centum of the mass known to revolve the Sun. H. The Gas giants – Jupiter. Jupiter and Saturn ‘s ambiances are mostly hydrogen and He. Uranus and Neptune ‘s ambiances have a higher per centum of â€Å" ices † , such as H2O, ammonium hydroxide and methane. Some uranologists suggest they belong in their ain class, â€Å" ice giants. † All four gas giants have rings, although merely Saturn ‘s ring system is easy observed from Earth. Our investigation ESP approaches Jupiter at an mean distance of 5.203 AU from the Sun we are now in the part of deep infinite. Jupiter at 318 Earth multitudes has 2.5 times the mass of all the other planets put together, and an mean denseness of 1,314 kg/m3. It is composed mostly of H and He. Jupiter ‘s internal heat creates semi-permanent characteristics in its ambiance, such as cloud sets and the Great Red Spot. On 7 January 1610, utilizing a telescope ( likely the first ) he constructed, astronomer Galileo Galilei saw four little â€Å" stars as he foremost thought † near Jupiter. He had discovered Jupiter ‘s four largest Moons, now called Io, Europa, Ganymede, and Callisto. These four Moons are known today as the Galilean orbiters. In retrospect, Jupiter has 63 known orbiters, and demo similarities to the tellurian planets, such as volcanism and internal warming. Galileo ‘s surprise and light is understood. In 2004, while looking through a little Meade reflecting telescope, Jupiter ‘s four largest Moons were seeable as they were all in a consecutive line traveling around the planets equatorial plane. For the first clip of all time, I gazed at four Moons in the solar system other than our ain, and it was an astonishing sight. Looking at Jupiter from an Earth or near-orbit telescope or planetal investigation, the evident surface and visual aspect is a blend of dramat ic colourss and atmospheric characteristics. Most seeable clouds are composed of ammonium hydroxide, and H2O vapour exists deep below and can sometimes be seen through clear musca volitanss in the clouds. The planet ‘s â€Å" chevrons † are dark belts and light zones are created by strong east-west air currents in Jupiter ‘s upper ambiance. The Great Red Spot, a elephantine spinning storm, has been observed since the 1800s, and in recent old ages, three storms merged to organize the Little Red Spot, about half the size of the Great Red Spot. In December 1995, NASA ‘s Galileo ballistic capsule dropped a investigation into Jupiter ‘s ambiance, which made the first direct measurings of the planet ‘s ambiance, and began a multiyear survey of Jupiter and the largest Moons. The magnetic field of Jupiter and is about 20,000 times every bit powerful as Earth ‘s. Trapped within Jupiter ‘s magnetosphere ( the country in which magnetic field lines encircle the planet from pole to punt ) are droves of charged atoms. Jupiter ‘s rings and Moons are embedded in an intense radiation belt of negatrons and ions trapped by the magnetic field, and possibly a Moon landing is possible in the hereafter, but protection from this radiation will be necessary. Jupiter ‘s ambiance is similar to that of the Sun, and the composing is largely hydrogen and He. Deep in the ambiance, the force per unit area and temperature addition, compacting the H gas into a liquid. At farther deepnesss, the H becomes metallic and electrically carry oning. In this metallic bed, Jupiter ‘s powerful magnetic field is generated by electrical currents driven by Jupiter ‘s fast rotary motion ( 9.8 Earth hours. ) At the centre, the huge force per unit area may back up a solid nucleus of stone about the size of Earth. Jupiter ‘s Galilean Satellites. Io is the most volcanically active organic structure in the solar system and the surface is covered by S in different motley signifiers. As Io travels in its somewhat egg-shaped orbit, Jupiter ‘s huge gravitation causes â€Å" tides † in the solid surface that rise 100 m ( 300 pess ) high on Io, bring forthing adequate heat for volcanic activity and to drive off any H2O. Io ‘s vents are driven by hot silicate magma. Europa ‘s surface is largely H2O ice, and there is grounds that it may be covering an ocean of H2O or ice beneath. Europa is thought to hold twice every bit much H2O as does Earth, and machinations scientists because of its potency for holding a â€Å" habitable zone. † Life signifiers have been found booming near subterraneous vents on Earth and in other utmost locations that may be parallels to what may be on Europa. Given the right opportunity and some basic conditions, life is possible on so many different degrees. Ganymede is the largest Moon in the solar system ( larger than the planet Mercury ) , and is the lone Moon known to hold its ain internally generated magnetic field. Callisto ‘s surface is highly to a great extent cratered and ancient, a seeable record of events from the early history of the solar system. However, the really few little craters on Callisto indicate a little grade of current surface activity. The insides of Io, Europa and Ganymede have a superimposed construction similar to the Earth ) . Io, Europa and Ganymede all have nucleuss and mantle ‘s partly liquefied stone or a solid stone envelope around the nucleus. The surface of Europa and Ganymede is a midst, soft ice bed and a thin crust of impure H2O ice. In the instance of Europa, a subsurface H2O bed likely lies merely below the icy crust and may cover the full Moon. This makes Europa a campaigner for Moon landing, but in the film â€Å" 2001 A Space Odyssey † , world was forbidden to set down on Europa, nevertheless, we will of class neglect. Layering at Callisto is less good defined and appears to be chiefly a mixture of ice and stone. As ESP leaves the Jovian universe and one time more, as the voyager infinite investigations successfully navigated, rounds the elephantine planet to pick up extra velocity for the ocean trip to Saturn, and beyond. I. Saturn. At 9.5 AU from the Sun Saturn has a mass of 5.69 E26 kilogram. With an mean denseness of 690 kg/m3, Saturn is far less monolithic than any planet in the solar system, being merely 95 Earth multitudes and could be floated in H2O since its denseness is less than that of H2O. Famous for its extended ring system, Saturn has similarities to Jupiter, such as its atmospheric composing, as Saturn is largely a monolithic ball of H and He. Saturn is alone among the planets. All four gas giant planets have rings, made of balls of ice and stone, but none are as dramatic or every bit complicated as Saturn ‘s. Saturn ‘s magnetic field is non every bit immense as Jupiter ‘s, nevertheless ; it is still 578 times every bit powerful as the Earth ‘s. Saturn, its rings and many of its orbiters lie wholly within Saturn ‘s ain tremendous magnetosphere ( the part of infinite in which the behaviour of electrically charged atoms is influenced more by Saturn ‘s m agnetic field ) than by the solar air current. Jupiter portions the magnetic field similarity. Saturn has sixty known orbiters ; two of which, Titan and Enceladus, show marks of geological activity, though they are mostly made of ice. Titan is larger than Mercury and the lone orbiter in the Solar System with a significant ambiance. In 1610, Italian uranologist Galileo Galilei was the first to stare at Saturn through a telescope, and in 2004, after seeing Jupiter ‘s Galilean satellites ; I saw the lineation of Saturn ‘s rings. My image was non unlike Galileo ‘s where I could decide the rings, non their construction or colour, and noticed a dark infinite between the ring system and the planet was seeable. Although a absorbing sight, nil compared to seeing the Galilean orbiters. However, to recognition Galileo, my contemporary meade-reflector was equal to Galileo ‘s really first refractor ; a testament to the head of a mastermind. He would likely state, they do n't construct them like they used excessively. Winds in the upper ambiance reach 500 m ( 1,600 pess ) per second near the equatorial part. These super-fast air currents, combined with heat lifting from within the planet ‘s inside, do the yellow and gold sets seeable in the ambiance. In the early 1980s, NASA ‘s Voyager 1 and Voyager 2 ballistic capsule revealed that Saturn ‘s rings are made largely of H2O ice and the ring system extends 100s of 1000s of kilometres from the planet, nevertheless surprising, the perpendicular deepness is typically merely about 10 m ( 30 pess ) in the chief rings. Saturn ‘s Moon ‘s. The largest Moon, Titan, is a spot bigger than the planet Mercury ( Titan is the second-largest Moon in the solar system ; merely Jupiter ‘s Moon Ganymede is bigger. ) Titan is so big that it affects the orbits of other near-by Moons. At 5,150 kilometer ( 3,200 stat mis ) across, it is the 2nd largest Moon in the solar system. Titan hides its surface with a thick nitrogen-rich ambiance. Titan ‘s ambiance is similar to the Earth ‘s ambiance of long ago, before biological science took clasp on our place planet and changed the composing from C dioxide to O. Titan ‘s ambiance is about 95 % N, 3 % He with hints of methane. While the Earth ‘s atmosphere extends about 60 kilometers ( 37 stat mis ) into infinite, Titan ‘s extends about 600 kilometer ( 10 times that of the Earth ‘s ambiance ) into infinite. The Moon Iapetus has one side every bit bright as snow and one side every bit dark as black velvet, with a immense ridge running about most of its dark-side equator. Phoebe is uneven as the Moon orbits the planet in a way opposite that of Saturn ‘s larger Moons, as do several of the more late discovered Moons. The consequence of an impact that about split the Moon Mimas apart has an tremendous crater on one side supplying grounds that the solar system still contains left-over dust and can do significant impacts. The investigation Cassini observed warm breaks on Enceladus where vaporizing ice clearly flights and forms a immense cloud of H2O vapour over the South Pole. Scientists have seen grounds of active ice volcanism on Enceladus. Hyperion has an uneven planate form and rotates chaotically, likely due to a recent hit, and likely due to the infinite debris being tossed out from the ring-system due to hits at that place. The Moon Pan orbits within the chief rings and helps swee p stuffs out of a narrow infinite known as the Encke Gap ( have to make a better occupation of brushing with the many impacts ongoing. ) Finally, Tethys has a immense rift zone called the â€Å" Ithaca Chasma † that runs about three-fourthss of the manner around the Moon. Four extra Moons orbit in stable topographic points around Saturn they tag along with their larger sisters. These Moons lie 60 grades in front of or behind a larger Moon and in the same orbit. Telesto and Calypso move along with the larger Moon Tethys in its orbit ; Helene and Polydeuces occupy similar orbits with Dione. A hit with any of these smaller Moons within the same orbit can do ruinous effects with Saturn ‘s larger Moons. Uranus is following as our investigation moves on from Saturn. J. Uranus This unusual inverted universe is 19.6 Gold from the Sun, and at 14 Earth multitudes, has a mass of 8.68 E25 kilogram with a average denseness of 1,290 kg/m3. Uniquely among the planets is the lone gas-giant whose equator is about at right angles to its orbit ( its axial joust is over 90 grades to the ecliptic, ) and like Venus, rotates east to west. Scientists ‘ believe a hit with an Earth-sized object may explicate Uranus ‘ alone joust. Because of Uranus ‘ unusual orientation, the planet experiences utmost fluctuations in sunshine during each 20-year-long season. Uranus has more methane in it ‘s chiefly H and He atmosphere than Jupiter or Saturn. Methane gives Uranus its bluish shade. It has a much colder nucleus than the other gas giants, and radiates really small heat into infinite. Uranus has twenty-seven known orbiters, the largest 1s being Titania, Oberon, Umbriel, Ariel and Miranda. Scientists have now identified 13 known rings around Uranus. The interior system of nine rings, discovered in 1977, consists largely of narrow, dark rings. Voyager 2 found two extra inner rings. An outer system of two more-distant rings was discovered by the Hubble Space Telescope in 2003. Uranus is one of the two ice-giants of the outer solar system ( the other is Neptune ) . Sunlight base on ballss through the ambiance and is reflected back out by Uranus ‘ cloud tops. Methane gas absorbs the ruddy part of the visible radiation, ensuing in a bluish green colour. The majority ( 80 per centum or more ) of the mass of Uranus is contained in an drawn-out liquid nucleus dwelling largely of icy stuffs ( H2O, methane and ammonium hydroxide ) . Magnetic Fieldss are normally aligned with a planet ‘s rotary motion, nevertheless, Uranus ‘ magnetic field is tipped over ( the magnetic axis is tilted about 60 grades from the planet ‘s axis of rotary motion. ) The magnetic Fieldss of both Uranus and Neptune are really irregular. Uranus has 27 known Moons and unique in being named for Shakespearian characters, along with a twosome of the Moons being named for characters from the plants of Alexander Pope, whereas most of the orbiters revolving other planets take their names from Greek mythology. The Voyager 2 ballistic capsule visited the Uranian system in 1986 and tripled the figure of known Moons. Voyager 2 found an extra 10 Moons, merely 16-96 stat mis in diameter: Juliet, Puck, Cordelia, Ophelia, Bianca, Desdemona, Portia, Rosalind, Cressida and Belinda. Since so, uranologists utilizing the Hubble Space Telescope and improved ground-based telescopes have raised the sum to 27 known Moons. All of Uranus ‘s interior Moons ( those observed by Voyager 2 ) appear to be approximately half H2O ice and half stone. The composing of the Moons outside the orbit of Oberon remains unknown, but they are likely captured asteroids. The largest Moons of Uranus. Miranda is the innermost and smallest of the five major orbiters. It has elephantine canons every bit much as 12 times every bit deep as the Grand Canyon, with surfaces that appear really old, and others that look much younger. The brightest and perchance the youngest surface among all the Moons of Uranus is Ariel. It has few big craters and many little 1s, bespeaking that reasonably recent impact hits wiped out the big craters that would hold been left by much earlier, bigger hits. Intersecting vales pitted with craters scars its surface. Saturn ‘s Moon Umbriel is ancient, and the darkest of the five big Moons. It has many old, big craters and shows a cryptic bright pealing on one side. Oberon, the outermost of the five major Moons, is old, to a great extent cratered and shows small marks of internal activity. The shepherd Moons, Cordelia and Ophelia maintain Uranus ‘ thin, outermost â€Å" epsilon † pealing good defined. Between them and Miranda is a group of eight little orbiters unlike any other system of planetal Moons. Astronomers do n't yet understand how the small Moons have managed to avoid crashing into each other within this crowded part. Leaving Uranus to revolve on it ‘s side, the ESP plots a class to Neptune, and begins the venture to the outter parts of the solar system. K. Neptune. An huge distance of 30 AU from the Sun ( 4.5 billion kilometers, 2.8 billion stat mis, ) more than 30 times as far from the Sun as Earth and unseeable to the bare oculus, the planet takes about 165 Earth old ages to revolve our Sun. In 2011 Neptune completed its first orbit since its find in 1846, and portrays the huge size of the solar system. Though somewhat smaller than Uranus, is more monolithic ( tantamount to 17 Earths ) and hence denser, and radiates more internal heat, but non every bit much as Jupiter or Saturn. The mass of Neptune is 1.02 E26 kilogram and has a denseness of 1,640 kg/m3. Neptune is the last of the H and He gas giants ( although called an ice-giant ) in our solar system. Neptune has thirteen known orbiters. Neptune was the first planet located through mathematical anticipations instead than through regular observations of the sky because Uranus did n't go precisely as uranologists expected it to, therefore it was hypothesized the place and mass of another unknown planet may be the cause of the ascertained alterations to Uranus ‘ orbit. The magnetic field of Neptune is approximately 27 times more powerful than that of Earth. Like Uranus, whose magnetic axis is tilted about 60 grades from the axis of rotary motion ; Neptune ‘s magnetosphere undergoes wild fluctuations during each rotary motion because of a similar 47 grades misalignment with the planet ‘s rotational axis. Neptune ‘s atmosphere extends to great deepnesss, bit by bit unifying into H2O and other liquid ices over a heavier, about Earth-size solid nucleus. Neptune ‘s bluish colour is the consequence of methane in the ambiance, but Neptune ‘s more vivid, brighter blue is the consequence of an unknown constituent that causes the more intense colour. Despite its great distance and low energy input from the Sun, Neptune ‘s air currents are estimated at three times stronger than Jupiter ‘s and nine times stronger than Earth ‘s. In 1989, Voyager 2 tracked a big, egg-shaped, dark storm ( Great Dark Spot ) in Neptune ‘s southern hemisphere, which was big plenty to incorporate the full Earth, spun counterclockwise and moved due west at about 750 stat mis per hr. Voyager 2 ‘s observations confirmed that Neptune has six known rings that are considered to be unusual, have four thick parts ( bunchs of dust ) called discharge, and thought to be comparative ly immature and ephemeral. Voyager 2 ‘s observations besides discovered 6 Moons at Neptune, 13 that are known today. Voyager 2 besides discovered geysers spiting icy stuff upward more than 8 kilometer ( 5 stat mis ) on Neptune ‘s Moon Triton. Neptune ‘s Moons. The largest Moon, Triton, is geologically active, with geysers of liquid N. Triton ( non to be confused with Saturn ‘s Moon, Titan ) , orbits the planet in the opposite way compared with the remainder of the Moons, proposing that it may hold been captured by Neptune in the distant yesteryear. Triton is highly cold with temperatures on its surface about -391degrees Fahrenheit ( -235 grades Celsius ) . Triton ‘s thin ambiance, besides discovered by Voyager, has been detected from Earth several times since, and is turning warmer, although scientists do non yet cognize why. Voyager 2 revealed fascinating inside informations about Triton, such as ice vents that spout, what is likely a mixture of liquid N, methane and dust, and which immediately freezes and so snows back down to the surface. One image from Voyager 2 shows a plume hiting 5 stat mis into the sky and floating 87 stat mis downwind. Neptune ‘s gravitation acts as a retarding force on the counter-orbiting Triton, decelerating it down and doing it drop closer and closer to the planet. Millions of old ages from now, Triton will come near adequate for gravitative forces to interrupt it apart, perchance organizing a ring around Neptune brilliantly plenty to be seen with a telescope from the Earth. Proteus and five other Moons had to wait for Voyager 2 to do them known. All six are among the darker objects found in the solar system. Astronomers utilizing improved ground-based telescopes found more orbiters in 2002 and 2003, conveying the known sum to 13. L. Trans-Neptunian Region. The country beyond Neptune, frequently called the outer Solar System or the â€Å" trans-Neptunian part † is still undiscovered. It appears to dwell chiefly of little universes ( the largest holding a diameter merely a fifth that of the Earth and a mass far smaller than that of the Moon ) composed chiefly of stone and ice. Our investigation, The Earth Science Probe ( ESP ) has travelled one million millions of stat mis and explored the eight known planets, and now embarks to the border of the solar system to research the Kuiper belt and the Oort Cloud, and beyond the influence of the Sun to the heliosphere. Comets, friend or adversary. Comets are leftovers from the formation of the solar system around 4.6 billion old ages ago, and consist largely of ice coated bouldery stuff, referred to as dirty sweet sand verbenas, and output of import hints about the formation of our solar system. Comets may hold brought H2O and organic compounds, the edifice blocks of life, to the early Earth and other parts of the solar system. Most comets travel a safe distance from the Sun, comet Halley comes no closer than 89 million kilometer ( 55 million stat mis ) . However, some comets, called sun-grazers, clang straight into the Sun or acquire so near that they break up and vaporize. A disc-like belt of icy organic structures exists merely beyond Neptune, as theorized by astronomer Gerard Kuiper ( the so called Kuiper Belt ) , where a population of dark comets orbits the Sun in the kingdom of Pluto. These icy objects, on occasion pushed by gravitation into orbits conveying them closer to the Sun, go the alleged short-period comets. They take less than 200 old ages to revolve the Sun, and their visual aspect is predictable because they have passed by earlier. Comets are little Solar System organic structures, normally merely a few kilometres across, composed mostly of volatile ices. They have extremely bizarre orbits, by and large a perihelion within the orbits of the interior planets and an aphelion far beyond Pluto. When a comet enters the inner Solar System, its propinquity to the Sun causes its icy surface to sublimate and ionise, making a coma: a long tail of gas and dust frequently seeable to the bare oculus. Short-period comets have orbits enduring less tha n two hundred old ages. Long-period comets have orbits enduring 1000s of old ages. Short-period comets are believed to arise in the Kuiper belt, while long-period comets, such as Hale-Bopp, are believed to arise in the Oort cloud, nevertheless, these long-period comets are less predictable as many arrive from a part called the Oort Cloud about 100,000 Golds from the Sun. These Oort Cloud comets can take every bit long as 30 million old ages to finish one trip around the Sun. NASA ‘s Stardust mission successfully flew within 236 kilometers ( 147 stat mis ) of the karyon of Comet Wild 2 in January 2004, roll uping atoms and interstellar dust for a sample return to Earth in 2006. Analysis of the Stardust samples suggests that comets may be more complex than originally thought. Minerals that formed near the Sun or other stars were found in the samples, and suggest that stuffs from the interior parts of the solar system traveled to the outer parts where comets formed. Another NASA mission, called Deep Impact, consisted of a flyby ballistic capsule and an impactor. In July 2005, the impactor was released into the way of comet â€Å" Tempel 1 † in a planned hit, which vaporized the impactor and ejected monolithic sums of mulct, powdered stuff from beneath the comet ‘s surface. M. The Kuiper Belt. The Kuiper belt, the part ‘s first formation, is a great ring of dust similar to the asteroid belt, but composed chiefly of ice. It extends between 30 and 50 AU from the Sun. This part is thought to be the beginning of short-period comets. It is composed chiefly of little Solar System organic structures ( Kuiper Belt Object, or KBO for short, ) but many of the largest KBOs, such as Quaoar, Varuna, and Orcus, may be reclassified as dwarf planets. There are estimated to be over 100,000 Kuiper belt objects with a diameter greater than 50 kilometer, but the entire mass of the Kuiper belt is thought to be merely a ten percent or even a centesimal the mass of the Earth. Many Kuiper belt objects have multiple orbiters, and most have orbits that take them outside the plane of the ecliptic. The Demoted Pluto is now considered a dwarf planet and is the largest known object in the Kuiper belt at an mean distance of 39 AU. When discovered in 1930 it was considered to be the 9th planet ; this changed in 2006 with the acceptance of a formal definition of planet. Pluto has a comparatively bizarre orbit inclined 17 grades to the ecliptic plane ( the Earth ‘s Moon is 5 grades ) and runing from 29.7 AU from the Sun at perihelion ( within the orbit of Neptune ) to 49.5 AU at aphelion. It is ill-defined whether Charon, Pluto ‘s largest Moon, will go on to be classified as such or as a midget planet itself. In July 2005, a squad of scientists announced the find of a KBO that was ab initio thought to be about 10 per centum larger than Pluto. The object subsequently named Eris, orbits the Sun about one time every 560 old ages, its distance varying from approximately 38 to 98 AU. ( For comparing, Pluto travels from 29 to 49 AU in its solar orbit. ) Eris has a little Moon named Dysnomia. More recent measurings show it to be somewhat smaller than Pluto. The find of Eris revolving the Sun and similar in size to Pluto ( which was so designated the 9th planet ) , forced uranologists to see whether Eris should be classified as the 10th planet. Alternatively, in 2006, the International Astronomical Union created a new category of objects called dwarf planets, and placed Pluto, Eris and the star-shaped Ceres in this class. While no ballistic capsule has yet traveled to the Kuiper Belt, NASA ‘s New Horizons ballistic capsule is scheduled to get at Pluto in 2015. The New Horizons mission squad hopes to analyze one or more Kuiper belt objects after its Pluto mission is complete. N. Farthest parts. The point at which the Solar System ends and interstellar infinite begins is non exactly defined, since its outer boundaries are shaped by two separate forces, the solar air current and the Sun ‘s gravitation. The solar air current is believed to give to the interstellar medium at approximately four times Pluto ‘s distance. The Scattered Disc. The scattered phonograph record overlaps the Kuiper belt but extends much farther outwards. Scattered disc objects are believed to come from the Kuiper belt, holding been ejected by the gravitative influence of Neptune ‘s early outward migration. Most scattered phonograph record objects ( SDOs ) move from within the Kuiper belt and every bit far as 150 AU from the Sun. SDOs ‘ orbits are besides extremely inclined to the ecliptic plane, and are frequently about perpendicular to it. Eris ( 68 AU norm ) is the largest known scattered phonograph record object, and caused a argument about what constitutes a planet, since it is at least 5 % larger than Pluto with an estimated diameter of 2400 kilometer ( 1500 myocardial infarction ) . It is the largest of the known midget planets. It has one Moon, Dysnomia. Like Pluto, its orbit is extremely bizarre, with a perihelion of 38.2 AU ( approximately Pluto ‘s distance from the Sun ) and an aphelion of 97.6 A U, and steeply inclined to the ecliptic plane. The Heliopause. The heliosphere is divided into two separate parts. The solar air current travels at its maximal speed out to about 95 AU, or three times the orbit of Pluto. The border of this part is the expiration daze, the point at which the solar air current collides with the opposing air currents of the interstellar medium. Here the air current slows, condenses and becomes more disruptive, organizing a great egg-shaped construction known as the heliosheath that looks and behaves really much like a comet ‘s tail, widening outward for a farther 40. The outer boundary of the heliosphere, the heliopause, is the point at which the solar air current eventually terminates, and is the beginning of interstellar infinite. No ballistic capsule, non even the Voyager investigations have yet passed beyond the heliopause, so it is impossible to cognize for certain the conditions in local interstellar infinite. O. Oort cloud. The conjectural Oort cloud is a great mass of up to a trillion icy objects that is believed to be the beginning for all long-period comets and to environ the Solar System at around 50,000 AU, and perchance to every bit far as 100,000 AU. It is believed to be composed of comets which were ejected from the inner Solar System by gravitative interactions with the outer planets. Oort cloud objects move really easy, and can be perturbed by infrequent events such as hits. Sedna and the interior Oort cloud. In March 2004, a squad of uranologists announced the find of a planet-like object revolving the Sun at an utmost distance. The object, since named Sedna for an Inuit goddess who lives at the underside of the cold Arctic ocean, approaches the Sun merely briefly during its 10,500-year solar orbit. Sedna travels in a long, egg-shaped orbit between 76 and about 1,000 AU from the Sun. Since Sedna ‘s orbit takes it to such an utmost distance, its inventors have suggested that it is the first observed organic structure belonging to the interior Oort Cloud. Sedna is a big, ruddy Pluto-like object, and discovered by Mike Brown in 2003, asserts that it can non be portion of the scattered phonograph record or the Kuiper Belt, he and other uranologists consider it to be the first in an wholly new population. Brown footings this population the â€Å" Inner Oort cloud, † as it may hold formed through a similar procedure, although it is far closer to the Sun. Sedna is really likely a dwarf planet, though its form has yet to be determined with certainty. P. Solar System Boundaries. Much of our Solar System is still unknown. The Sun ‘s gravitative field is estimated to rule the gravitative forces of environing stars out to about two light old ages ( 125,000 AU ) . The outer extent of the Oort cloud may non widen farther than 50,000 AU. Despite finds such as Sedna, the part between the Kuiper belt and the Oort cloud, an country 10s of 1000s of AU in radius, is still virtually chartless. There are besides ongoing surveies of the part between Mercury and the Sun. Objects may yet be discovered in the Solar System ‘s chartless parts. 3. Our Galactic Context. Our Solar System is located in the Milky Way galaxy, a coiling galaxy with a diameter of about 100,000 light old ages incorporating about 200 billion stars. Our Sun resides in one of the Milky Way ‘s outer spiral weaponries, known as the Orion Arm. The Sun lies between 25,000 and 28,000 light old ages from the Galactic Center finishing one revolution about the galactic centre every 225-250 million old ages, and is known as the Solar System ‘s galactic twelvemonth. A. The Solar System ‘s location. The development of life on Earth in the galaxy is likely a factor in as we inhabit a comparatively quite country less dense than one would anticipate nearer to the galactic centre where events are more violent. The Solar System ‘s orbit is near to being round and approximately the same velocity as that of the coiling weaponries, which means it passes through them merely seldom, so mobile infinite dust ( asteroids ) does non typically venture into the influence of the suns gravitative pull. B. Objects revolving the Sun. All objects are divided into three categories ; planets ( their 166 known Moons ) , three midget planets ( Ceres, Pluto, and Eris and their four known Moons ) , and one million millions of little Solar System organic structures. A planet is any organic structure in orbit around the Sun that has adequate mass to organize itself into a spherical form. There are eight known planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. On August 24 2006 the International Astronomical Union defined the term â€Å" planet † for the first clip, excepting Pluto and reclassifying it under the new class of dwarf planet along with Eris and Ceres. C. The Solar System Formation. Is believed to hold formed harmonizing to the nebulous hypothesis, which says that 4.6 billion old ages ago the Solar System formed from the gravitative prostration of a elephantine molecular cloud several light years across. As gravitation, acted on the catching cloud, it began to flatten into a spinning disc with a diameter of approximately 200 AU and a hot, heavy protostar at the centre began to organize. After 100 million old ages, the force per unit area and denseness of H in the Centre of the fall ining nebula became great plenty for the young-sun to get down thermonuclear merger finally going a fully fledged star. D. The staying cloud of gas and dust. They are believed to hold formed by accumulation, the planets began as dust grains in orbit around the cardinal protostar ; so gathered by direct contact into bunchs ; so collided to organize larger organic structures ( planetesimals ) ; so bit by bit increased by farther hits over the class of the following few million old ages. The planetesimals which formed the interior Solar System were comparatively little and composed mostly of compounds with high runing points, such as silicates and metals. These bouldery organic structures finally became the tellurian planets. Farther out beyond the star-shaped belt, and beyond the frost line, where icy compounds could stay solid, Jupiter and Saturn became the gas giants. Uranus and Neptune captured much less material and are known as ice giants because their nucleuss are believed to be made largely of ices ( hydrogen compounds ) . C. Planet Summary. Terrestrial planets all have about the same type of construction: a cardinal metallic nucleus, largely iron, with a environing silicate mantle. The Moon is similar, but has a much smaller Fe nucleus. Tellurian planets have canons, craters, mountains, and vents. Tellurian planets possess secondary atmospheresA – ambiances generated through internal volcanism or comet impacts, as opposed to the gas giants, which possess primary atmospheresA – ambiances captured straight from the original solar nebula. A gas giant ( sometimes besides known as a Jovian planet after the planet Jupiter, or elephantine planet ) is a big planet that is non chiefly composed of stone or other solid affair. There are four gas giants in the Solar System: Jupiter, Saturn, Uranus, and Neptune. The tellurian planets chiefly composed of dense silicates formed closer to the Sun and retained their solid construction because of the close propinquity to the Sun. In contrast, the gas giants ab initio formed from nebular-gases far from the Sun became planets and retained gas-like constructions cold plenty to distill to liquids and ice.

Life for the young ladies in Jane Austen’s “Pride and Prejudice” Essay

Life for the young ladies in â€Å"Pride and Prejudice† was very different to how life is today in the 21st century. I hope to compare the lives of women living in these times and find if life really was easier in the time of â€Å"Pride and Prejudice†. To decide this I will discuss the aspects of class and the social system, education, entertainment and leisure, transport and marriage that affect these young ladies. In the book â€Å"Pride and Prejudice† there are very obvious class distinctions and strict separations between working classes and upper classes. The strictness of this class separation was such that Darcy felt he would be betraying his family to express his true feelings for Elizabeth Bennet, who he thought to be of a lower class than him. It was not acceptable in the upper classes and aristocracy for someone to have to work for their money. The Bennet ladies were in a difficult position as they were still considered to be high middle class, but did not have enough money to support themselves and to be passed down to them from their father when he died. The Bingley sisters scorned those who worked or â€Å"were in trade†, and those who had no â€Å"worthy connections†. All the characters who appear in â€Å"Pride and Prejudice† seem to be very sure of what they believe their place in the order of society is. Moving around the classes was difficult and unusual because the status was inherited. Today we no longer have these severe class differences, and so who young ladies mix with has much less to do with class, what your connections are or how much money you have. Education is also another major difference between how young ladies live today and how they were living in â€Å"Pride and Prejudice†. When Jane Austen was writing middle and upper class girls were taught to read and write and may have learnt another language, usually French. Young ladies would not have been expected to have any further education but would have been far more highly thought of had they been accomplished in music than they would have been if they were well educated. Caroline Bingley when talking about ladies’ accomplishments says â€Å"A woman must have a thorough knowledge of music, singing, drawing, dancing, and the modern languages, to deserve the †¦ word†. Even if a young lady wished to get a better education she would have found it very difficult as universities were not open to women and she would not have been able to further a career. Today everyone is entitled to an education and many young ladies go on to have a further education. There are now many more career opportunities for educated women as they are seen equal to men and an educated woman is not thought unusual. Throughout the book the young ladies seem to have a limited amount of entertainment and leisure activities. The Bennet sisters had no entertainment out of the home unless there was a Ball happening in Meryton, and this would only happen when there were officers in the town. Young ladies were not meant to go anywhere public without a chaperone and so this also limited what they could do. The Bennet sisters amused themselves with reading, embroidery and music, having not much else to occupy their time. In the 21st century there are far more things available to entertain young ladies. Much of their time is taken up by education or paid work, neither of which were applied to the ladies in â€Å"Pride and Prejudice†. The range of activities available to spend free time doing has greatly increased and with the amount of transport now available, getting from place to place is no problem. Transport appears to have been quite a problem to the sisters in â€Å"Pride and Prejudice†. Walking was the easiest way to travel, a horse and carriage was used for longer distances. Compared with the transport in the 21st century this was all very slow and moving around the country was a major undertaking. It takes most of two days for Elizabeth to return to Longbourn from Derbyshire after hearing about Lydia and Wickham, â€Å"They travelled as expeditiously as possible; and sleeping one night on the road, reached Longbourn by dinner time next day.† Although we do not know exactly where Longbourn is we know that it would not take that long to complete this journey using todays transport. Almost all the excursions in the book have had to have been planned around transport and how easy the travel is. We would find it strange today for people to have to plan quite short journeys solely on the ease of transport†¦. Communications have also changed considerably. In â€Å"Pride and Prejudice† the only form of communication apart from word of mouth was letter writing. Today we have the telephone, mobile phones, text messaging and e- mails. Most of the views about marriage illustrated in â€Å"Pride and Prejudice† have changed. This is what is said about Charlotte’s views on marriage â€Å"Without thinking highly either of men or of matrimony, marriage had always been her object; it was the only honourable provision for well-educated young women of small fortune, and however uncertain of giving happiness, must be their pleasantest preservative from want.† Marrying for love was an ideal, but not always practical. The ladies in â€Å"Pride and Prejudice† were unable to support themselves, so often had no choice but to marry someone who they may not have loved but was suitable. Elizabeth Bennet, however, is very strong in the view that she will only marry for love, and condemns Charlotte for marrying for money. In the 21st century it seems expected for ladies to marry for love. I think that one of the reasons views on marriage have changed so dramatically from the writing of â€Å"Pride and Prejudice† to 21st century is that women are now able to support themselves. There is no longer much need for a woman to marry a man only for financial reasons as women can now have a carreer and earn equal amounts as men. I do not think that life for the young ladies in â€Å"Pride and Prejudice† was easier than life is in the 21st century, but neither do I think that it is simpler for young ladies living today. I think that aspects of the lives of the Bennet sisters was simpler than that of the lives today, but I also think that in some areas of their lives things were more pressured and difficult. The young ladies in â€Å"Pride and Prejudice† were expected to have very simple aims in their lives, to find a good husband and have a family. Today young women are expected to attain a good education, maybe going onto higher education and start a carreer. They are expected to pursue this carreer and get married then start a family. However, transport and communications in the 21st century are far easier and simpler than those in â€Å"Pride and Prejudice†.

Monday, July 29, 2019

Revising Response to Pop Culture Essay Example | Topics and Well Written Essays - 1000 words

Revising Response to Pop Culture - Essay Example To many people, â€Å"True Life† lets them know they are not alone. The show sometimes focuses on very controversial issues that are not typically discussed openly, such as questioning one’s sexuality, dealing with debt or homelessness, or infidelity in relationships. MTV producers of the show really catch viewers’ attention with the title â€Å"True Life†. Every episode is further personalized with unique subtitle for every episode. Although what is aired may cause controversy at times, the show is still keeping audiences’ and the critics’ attention for its honest portrayal of the lives of young adults today. â€Å"True Life† allows viewers like myself to connect with people all over the world through a personal issue that is being shared. Finding a common ground between viewers and the subjects of the show, despite their differences, is what makes the show so popular. Many people do not realize how similar they are to someone from a different background until they are exposed to the other person’s daily life and how they deal with some of the same struggles and obstacles to achieving their goals. I think the show sends a very important message that despite our perceptions of people different from ourselves, at our core, we all face adversity and have to choose the paths we take to get to where we want to be. â€Å"True Life† is targeted mostly to MTVs typical audience of teens and young adults, however, in an interview with Betsy Forhan, MTV’s Executive Producer of â€Å"True Life†, we see how the show relates to other groups as well. â€Å"We have a constantly evolving audience and as the older people phase out, we have a brand new audience that is just being introduced to our show†, says Forhan. Forhan also credits the varied staff of the show with its appeal to so many people, â€Å"In our office, it’s a range of ages from our executives in their early 40’s t o the young people who are just out of college† (Forhan, 2010). Having a broad range of people work on the show to discover what’s happening now that will interest viewers in from different backgrounds really helps keep the â€Å"pop† in the popularity of the show. â€Å"You gotta keep moving with the times, things change so fast†. Forhan is also proud of the many awards her docu-series has won, including a 2005 GLAAD Media Award for Outstanding Documentary and a 2008 Emmy Award for Best Special Class Series. â€Å"True Life† has ultimately succeeded in doing what the producers intended: portraying the situations in life that are sometimes the hardest to accept. Anyone who has gone through an addiction of any sort, rehab or counseling, a big move, an uncontrollable disease or disability, perhaps an unexpected pregnancy or death, or even being gay can relate to at least one or more episodes. The show supports the notion, â€Å"that which does not ki ll you only makes you stronger† by letting the audience into the real dilemmas of people and watching them struggle, and hopefully succeed. Seeing others pull through, whether you know them or not, leaves you with a sense of being proud and keeping faith. At the end of the show, there is usually an update of how the subjects have faired after the show aired, which helps to further the emotional connection with the audience. There are negative sides to the show, however. One example would

Sunday, July 28, 2019

Lessons from Tribal People Essay Example | Topics and Well Written Essays - 250 words

Lessons from Tribal People - Essay Example According to ManKiller and Lyon tribal mind set is different from Other Americans as they are pure in their thoughts and feelings. They have the gratitude to life, nature and God. They value relationship and hard work. As per ( Spaid )â€Å"Mankiller says the Cherokees, who dont live on a reservation, are not as isolated and have more industries than most Indian peoples†. Mankiller suggest that the universal nature of tribal people is that they value their tradition and culture enormously.Living a simpler tribal existence means staying away from complexities of urban life. The life in the modern world is just a way to destroy nature. In the modern world, the natural resources are exploited and man has less consideration for nature and humanity. According to (Jayson,) â€Å"Primitive people lead self-sufficient lives that do not destroy the biosphere that supports them† .Simple tribal life is pure and living in alliance with nature and respecting earth its creature and God. Anistara, . "The Hopi and Kogi Tribes." http://worldnativesunited.tribe.net. Utah Street Networks, 2004. Web. 14 Feb. 2014. . Jayson, Ray. "SEA GYPSY TRIBAL PRINCIPLES." http://theseagypsyphilosopher.blog spot.com. Aw esome Inc., 2011. Web. 14 Feb. 2014. . Spaid, Elisabeth L. "Rebuilding a Nation : Cherokees: Chief Wilma Mankiller says her job like being president of a tiny country, a CEO and a social worker.." http://articles.latimes.com. The LosAngeles Times, 1992. Web. 14 Feb. 2014.

Saturday, July 27, 2019

Operations management Essay Example | Topics and Well Written Essays - 2000 words - 2

Operations management - Essay Example Operations management in an organisation is concerned with the management of people, processes, technology and other related resources in order to produce quality goods and services. In general Operations Management is concerned with the following four interrelated modules; ii. Supply chain modelling: Supply chain forms the backbone of any company and for a production company in particular, the implementation of TQM policies can only be carried out if the supply chain is reliable and quality conscious iii. World class production systems: This aspect can be very well taken care of by the individual company. But the rapid pace with which technological advancements is taking place calls for regular updates on production requirements as well. Lowering the production costs is indeed one of the tried and tested formula for achieving break even and promising profitability for any organisation. But under the globalization regime costs is not the prime factor for the long term survival of the business prospects. Small (1998) contends that, "Over the past two decades there has been a shift in the basis of competition in manufactured product markets. Firms that previously focused almost exclusively on lower costs have adjusted to a focus that places just as high and often higher premiums on quality and flexibility." Therefore managing the operations of an organisation requires it to adjust to these changes. Advanced Manufacturing Technologies (AMT) is the name given by industry experts to the technological advancements being implanted in the production sector. Managing Diversity Liberalization and globalization has opened up newer vistas of trade and business all around the globe. The car market in particular has become very competitive with major players like GM, Ford, Toyota, Audi, BMW, VW etc. besides the local players in some markets. With technology playing a major role in advancement of the features in a car, IT/ICT's help in making the car more intelligent has become very crucial. Besides adding features into the car itself, IT plays an important role in coordinating different aspects related to other departments. Developing effective marketing communication techniques is another such area requiring contribution of IT. Therefore, it appears from the case study that Daimler-Chrysler (DC) has its hands full. The company has not only to take care of the merger after-effects, but it has to keep the company ready to take on the competition from other car makers. As of now the wide culture gap between Stuttgart and Auburn Hills appears to be causing too man y problems for the company. The global economy has made it almost mandatory for international corporations that an effective strategy is adopted for managing the diversity. Companies are moving towards flatter organisational structures, and the global economy is allowing the movement of the workforce across national boundaries, effective interaction amongst

Friday, July 26, 2019

Lakshmi Mittal and the Growth of Mittal Steel Assignment

Lakshmi Mittal and the Growth of Mittal Steel - Assignment Example This paper discusses the consistent growth of Lakshmi Mittal and all the issues it met, including in the final stages before merging with Arcelor. The strategy it undertook concerning foreign direct investment (merging and acquisition) undoubtedly enabled it reach greater heights. Arcelor Mittal Steel Company is a company that was started as a result of a merger between two steel companies namely Mittal Steel and Arcelor. The origin of the company was in India with Mittal being started in the early 1970s. The company, just like any other investment, faced some key issues and challenges as it developed. However, all these challenges have to be overcome by identifying available opportunities and making use of them. Competition in India was very stiff leading to limited growth opportunities. The main competition came from state and the privately owned companies. This led to the decision of Mittal to expand its borders to other countries, beginning with Indonesia. It is evident that Mittal in its foreign direct investment chose to use the method of merger and acquisition, rather than Greenfield investment. This is so because the merger method offers a lot of advantages. The local companies to be merged to or acquired are already conversant with the local customs and the institutions associated to the acquired firms. Furthermore, there is an advantage of easy access and relations with distribution systems. Mittal company only had to make improvements on what the merged firms had done, so as to establish itself in a competitive position and eliminate the potential competitors. Marinescu and Constantin (2008) say that â€Å"from financial point of view, the acquisition necessitates a smaller initi al investment. Capital is injected step by step, leading to lower market risk as opposed to a Greenfield† (n.p.). In as many countries that Mittal developed, there are a lot of advantages that are achieved by the host nations. Apart

Thursday, July 25, 2019

Comparison between Electoral Systems and Movement Organising Essay

Comparison between Electoral Systems and Movement Organising - Essay Example This essay discusses that  using people’s power has positive aspects such as the appeal of having the masses in support of the change they need. When the masses are in solidarity in demanding for a particular action from the government, there is much more international attention focussed on the situation that forces the concerned parties in authority to take appropriate actions to correct the situation. Moreover, when the people act in solidarity to demand change, they have much more strength and motivation to see it done.This paper declares that the negative aspects of peoples’ power are that it can lead to violence resulting in injuries or even loss of lives. In some cases, it leads to a prolonged instability in the region or country affected. An example of the case where the peoples’ power took control was in the Arab revolution in Egypt when the Egyptians rose against the then regime of President Hosni Mubarak. The Egyptian protests mainly concerned politic al issues and legal issues that they claimed to treat them poorly. After they had succeeded to over through President Hosni, there were political reforms, even though instability remains a big challenge to date.  The number of registered voters who vote usually reduces under any normal circumstance. Movement building can be used to improve on the voter turnout more conveniently than the electoral system. Usually when the masses participate in demonstrations such as the peoples’ power, the struggling communities take a large part in the participation.

Wednesday, July 24, 2019

Working with Budgets Assignment Example | Topics and Well Written Essays - 250 words

Working with Budgets - Assignment Example It also assists in avoiding idle cash and any cash shortage that may adversely affect the organization. The cash budget consist mainly of four sections: Receipts, where cash balance at the beginning is entered plus all other cash collections from customers and other receipts; disbursement section, where all the cash payments are entered; cash surplus or deficit column, where the difference between receipts and payments are entered and finally, the financing section, enumerating a detailed account of repayments and borrowings expected during the financial period. The other budget that I work with in the organization where I work is the operating budget. This refers to a statement representing the organization’s financial plan for each duty center during the budget period and shows the operating activities involving expenditures and revenues. The various types of operating budgets I work with include revenue, expense and profit budgets. Revenue budget mainly identifies the revenue needed by the organization and mainly projects organization’s future sales. Expense budget is an operating budget that identifies expected future expenses during the budget period. These include fixed, variable and discretionary costs. Profit budget, on the other hand, is a combination of revenue and expense budget into a single statement to reveal the net and gross profit realized during the period. This budget is important because it aids in making final resource allocation (Ippolito, 2004). Working with different types of budget separating makes work harder as the organization I work with has been adopting this system. To make work easier, it is imperative that these budgets should be linked together in form of a master budget. A muster budget will be able to incorporate all the organizations financial and operating plans for the entire period (Cooke

Controversy that Surrounds Capital Punishment Research Paper

Controversy that Surrounds Capital Punishment - Research Paper Example Capital Punishment Capital punishment is one of the most controversial aspects of the administration of criminal justice. Its documented history is rooted in the early eighteenth century B.C. among the Babylonians under the leadership of King Hammurabi, who is associated with the Hammurabi Code (Brians 59). This code contained 282 laws that governed that society, with more than twenty-five of these laws advocating for the death penalty as a punishment for the crimes committed. These crimes included stealing from temples, breaking and entering, false accusations, and adultery, among others. During this period, the major modes of execution seemed to be harsh and inhumane and bent towards making the culprits suffer before they eventually died. For example, depending on the crimes committed, convicted criminals were put to death through burning, crucifixion, drowning, or even being beaten to death (Brians 64). In the United States, the first documented execution with regard to capital pu nishment can be traced back to the year 1608, when Captain George Kendall was killed for allegedly spying on Britain for Spain (Cassel 14). It may be important to note that the United States at this time was under the colonial rule of the Britons, who are credited with the introduction of the death penalty in the pre-independence era. The second execution was that of a Daniel Frank from the then-colony of Virginia, who was accused of committing robbery, an act that was contrary to the divine, moral, and martial laws of 1612 which were enforced by the governor, Sir Thomas Dale, and which prescribed the death penalty for crimes that would be considered petty today. Crimes that earned the death penalty included stealing items such as grapes, doing business with Indians, or merely killing a chicken (Cassel 23). The death penalty has been in existence so long that it is entrenched in many cultures (Bedau 12). It is therefore no surprise that many countries, including the post-independenc e United States, have embraced the death penalty as one way of deterring crimes, especially those considered capital offenses. However, the scope within which it is applied has been reduced significantly over the years to limit it to crimes such as first-degree murder and treason, as seen in most of the states’ penal codes. Other capital offenses include drug trafficking, kidnapping, aircraft hijacking, perjury, and acts of terrorism, among others, but these vary by state (Bedau 28). This means that committing perjury resulting in death may attract a death sentence in California but a more lenient punishment in a state such as Oklahoma. The military can also sentence soldiers to death in times of war for committing crimes such as desertion, rebelling openly against their superiors’ orders, or betraying their own forces, thereby compromising their mission. However, most of these crimes are uncommon, and murder has been the crime that has most often resulted in the appli cation of the death penalty in the United States (Roberts 132). Unlike in the pre-modern societies such as the Babylonians under Hammurabi, the carrying out of death sentences has taken more humane forms, which are less primitive and aimed at getting the results (i.e., the death of the convict) rather than inflicting pain. In this context, most

Tuesday, July 23, 2019

The US supreme court Essay Example | Topics and Well Written Essays - 750 words

The US supreme court - Essay Example For the appointment of a Supreme Court Judge to be confirmed by the Senate, a simple majority is required. Judges of the Supreme Court can be impeached and removed from office if they are found to be involved in misdemeanour or criminal activities (Abraham, 1992). The existence of the US Supreme Court is a necessity because of the roles it plays in several aspects of the legal framework of the country, such as its support for the civil rights movement, which received legal sanctity with the passing of the Civil Rights Act of 1964. This was a ground-breaking legislation in the country because it did away with most forms of discrimination against women and Blacks and with racial segregation. The Civil Rights Act of 1964 legally eliminated discrimination in voter registration as well as racial discrimination in educational institutions and at the work place. However, during the initial years, the constitutional validity of the Civil Rights Act was disputed in the context of its applicab ility to the private sector. In many of the important civil rights hearings, the US Supreme Court had held that Congress was not legally empowered to prevent discriminatory practices in the private sector. ... This ruling marked the beginning of the effectiveness of the separate but equal concept in the US. In 1971, the US Supreme Court held in the case titled Griggs v. Duke Power Co that the Civil Rights Act of 1964 does not permit discrimination at the work place and also that employers cannot adopt practices that are discriminatory towards women and minorities. In case titled University of Alabama v. Garrett, the Supreme Court held that the 11th Amendment did not permit state employees to file applications in federal courts to seek financial compensation for discriminatory practices used by employers in violation of the Americans with Disabilites Act. This decision revealed that the Supreme Court has not been favourable in regard to civil rights issues. It held that even if the state’s actions are indicative of being hard hearted, they may not necessarily violate provisions of the Constitution (The Leadership Conference, 2012). The US Supreme Court is a democratically legitimate institution because it acts under the given provisions and its judges are elected in keeping with the due process of law. However, the appointment of Supreme Court judges during the President Roosevelt’s time came under cloud because between 1933 and 1937, the Supreme Court had declared six of Roosevelt's eight major New Deal programs unconstitutional. Roosevelt wanted to prevent the Supreme Court from rejecting his future New Deal proposals and he reacted by introducing a scheme whereby new judges would be appointed to the Supreme Court and who would be supportive of his plans (Crawford, 2008). Roosevelt introduced a plan that gave him authority to appoint a new judge for

Monday, July 22, 2019

Levels of Life Worksheet Essay Example for Free

Levels of Life Worksheet Essay Complete all three parts of this worksheet. Part I: Atomic Structure – Fill in the missing information on atomic structure and organic compounds. Atomic Structure Subatomic Particle Charge Location in an Atom Proton Positive Nucleus Neutron Neutral Nucleus Electron Negative Spherical (outer-shell) Organic Compounds Large Biological Molecule Atoms it Contains Monomer(s) Function(s) in Living Organisms Carbohydrates C, H, and O Monosaccharides Source of energy Lipid C, H, and O Glycerol and fatty acids Cushion and insulate organs; builds cell membranes Protein C, H, O, N, and S Amino Acids Helps chemical reactions, provides support and structure, provides transport within bodies and provides movement of body Nucleic acids C, H, O, N, and P Necleotides Stores and transmits genetic information Part II: Characteristics of Living Organisms – Seven characteristics distinguish an object or thing from an actual living organism. All seven characteristics must be present simultaneously for something to be considered living. Fill in the remaining characteristics in the following table. Characteristics of a Living Organism 1. Order – exhibit complex but ordered organization. 2. Regulation- the environment outside of an organism can change but the organism is able to internally adjust to maintain or regulate appropriate levels for survival 3. Growth and development- the information provided by genetics which determines the growth and development patterns of an organism. 4. Energy utilization- the energy an organism takes in to use in preforming life activities. 5. Response to the environment- the response of a living organism to its environment. 6. Reproduction. Organisms reproduce their own kind. 7. Evolution. Reproduction underlies the capacity of populations to change (evolve) over time. Part III: Write a 200- to 300-word explanation of how atoms make up organic compounds, which make up all living organisms, addressing all three domains. According to Campbell Essential Biology with Physiology, (2010) how atoms make up organic compounds, which make up all living organisms, by  addressing all three domains, are that atoms unite with carbon elements. For an example the elements could be hydrogen, oxygen, and nitrogen. These three elements bond with atoms, and create carbon and hydrogen atoms. Then the three elements then become a linked chain, the chain produces three domains that the body and all living organisms need to function. They are considered as large biological molecules. Carbohydrates, proteins, and nucleic acids are the three domains of the atom chain. The small molecules are what link the large biological molecules together. Carbohydrates are created by carbon, oxygen, hydrogen linking together which form polysaccharides. The chain is called a polymer, which is a small molecule. Carbon, oxygen, hydrogen, and nitrogen unite and form amino acids. The Amino acids then produce proteins. Also when carbon, oxygen, hydrogen, and nitrogen unite combined with sugars it becomes nucleotide molecule. The nucleotide molecule then produces DNA and RNA. Carbon, oxygen, and hydrogen united together then form fatty acids. The fatty acids produce glycerol, and this is how lipids are formed. All three domains of that create an atom are living organisms that bond with each other to create organic compounds that produce the chains that release the carbohydrates, proteins, and nucleic acids. All three of these basic atoms are needed to grow food, and digest food that make up all living organisms including humans, animals, and natural gases. Reference Eric J. Simon, Jane B. Reece, and Jean L. Dickey. (2010). Campbell Essential Biology with Physiology,. Retrieved from Eric J. Simon, Jane B. Reece, and Jean L. Dickey, SCI/230 website.

Sunday, July 21, 2019

Postmodernism in the media

Postmodernism in the media Introduction to postmodernism, the media and the real The increasingly mediatised culture we live in today has lead us to be dominated by and dependent upon the production and consumption of images. Notions of objectivity and empiricism in the photographic have long since disappeared, but can we still locate our sense of the real in images? This dissertation will use many theories and ideas that discuss the role of photography, postmodernism and the real within todays culture and media. It will start with a discussion of the reasoning for the initial shift back towards the real. This shift mainly stemmed from postmodernism and the media. Postmodernism dealt with the idea of never ending reference and the fear about post-modern culture was that this never ending reference meant that all grip on reality had disappeared. There was a wish to return to something more stable and basic: the real? Photographers started to try and return to the purely descriptive photography from the times before the mass referencing of postmodernism. Due to pos tmodernism, we are constantly searching for meaning and analysis in images. This constant analysis of images has exhausted our trust and interest in the photograph; there was a need to create images different from the ones we see every day in the media in order to re-find our trust in the image as truth and as art. Which will lead onto looking at how, due to advances in technology and developments in photography, the new fast changing everyday image led to our relationships and emotions becoming mediatised. We re-live events and experiences through images, which leads to a loss of the real. We remember the image rather than the event. The media have a huge influence on events, advertising even our emotions and relationships. I will look at how some photographers can play a part in the manipulation and influence from the media that seems so much to control us and shape our world. But some photographers began to step away from the media, and postmodernism, older, slower technologies b egan to re-emerge. The single image produced from these methods of working could bring back the processes of our memory that have been complicated due to the sheer amount of information we get from other technologies. This leads onto the main question posed in this dissertation: can we ever (re)find the real? How much is this notion of the real influenced and shaped by the media influence in our world? Some would say that even photos that appear to be descriptive cannot escape being subjected to analysis and placed within a context of viewing. Maybe they can never be void of reference and construction? Maybe images can never provide the clear, stable version of reality that we want from them? Will we continue to be consumed by images, or is there a future beyond the cycle of referencing left by postmodernism? Can we ever (re)find authenticity, originality and a true form of photography that can direct us to the real? How has this affected our media? And how has it influenced the media to change and shape our world? Chapter One What caused people to lose a sense of the real? Postmodernism emerged as an art form in the mid to late 1980s and seemed to grow from and relate to the modernist movement. Postmodernism simply rejected the idea of originality; the original, new element within a photograph was replaced with the concept of reference and quotation. Finding something authentic and original as an idea was discarded. Essentially, postmodernism is the end of the new as something new within Postmodernism is looked upon as the byproduct of re-combining one or more different elements from within an already existing culture. An image has to refer to, use or quote another image or text, which will have referred to another image, which will have referred to a further different image and so on; a never-ending reference has begun and we begin to lose a sense of the real. Postmodernist culture enjoyed this play with signs of never ending reference, where the more you played the less anyone seemed to know what reality it was touching (Bate 2004)(1) Some early Postmodernist photographers include Andy Warhol, David Hockney, Edward Weston and Cindy Sherman. Shermans untitled films stills refer to trashy Hollywood films. These early works of hers were cleverly named Untitled then Film Still no indicating that they can be given any meaning and could refer to an actual specific existing film. The viewer is given a reference which leads to yet another representation, not reality itself. In short: here is a picture from a film, but I am not going to tell you which one, a message complicated by the fact that the photographs were not actual films stills. (Bate2004)(2) The factor that was feared about postmodernism is that the never-ending reference meant that all grip on reality has disappeared and this lead to a wish to return to a simpler, more stable and basic way of working. We have lost a sense of what is real within art and culture due to reality being discarded in favour of mass inter-textual referencing. But the fear about post-modern culture was that there no longer an anchor to reality at all, that reality had disappeared into an endless chain of other representations. (Bate 2004)(3) There began to be a wish to return to the values of the straight and pure photograph of modernism and everything that post modernism had rejected. A wish to return to something stable and basic, a wish to take a purely descriptive photograph. Some photographers managed to create purely descriptive work, an example of this could be Justin Partykas work The East Anglians. This ongoing body of work about the rural and agricultural area of East Anglia is a purely descriptive study of the landscape and people, who live, work and own the land in it. But the title The East Anglians could refer to Robert Franks The Americans a post World War II look beneath the surface of American life. Is anybody of work free from this postmodernist trap every photographer seems to fall into. The rise in postmodernism lead to photography being used more as an art form, and began to become popular with both artists and the public. It was no longer a low form of art and became widely accepted. Photography was used more by everyone and so began to develop further, leading to major advances in technology. With the invention of mobile phone cameras and the internet and email, it is easy to take a photograph and send it anywhere in the world in seconds. These new technologies mediatised our relationships and emotions. Yet despite the idea that these mobile technologies bring us all closer to each other, we are caught up in a contradiction, since they increasingly mediatise our relationships to one another. To look at something it has to be kept at a distance. (Bate 2004)(4) With digital technology today, there is no longer a need to wait for photographs to be processed, no need to wait until the end of a holiday or event to see the photographs and an less limited amount of photographs can be taken on that one camera as opposed to the 24 or 36 with the most commonly used 35mm negative film. This means people are taking so many photographs of everything rather than considering what particularly they would like photographs of. An unlimited sense has been brought into photography. This has lead to a loss in the real, and a loss in the value of photography. Previously at an important event such as a holidays, birthdays or weddings, families would use probably just one camera and probably only one or 2 films per event, some families using just one film per year for every event, resulting in a few photographs being taken which would then be put in an album and often reviewed. Now with digital technologies, people tend to have many cameras per family and at eve ry event, small or large, hundreds of photographs can get taken, the difference being these would then be put on a computer and most would never be looked at. This is where we have lost the value of photography, before digital it was precious, every photograph was considered, thought about and enjoyed afterwards. This has also lead to us remembering the photograph of the event rather than the actual event. If we spend all day photographing what is going on around us, we will remember just those photographs and not what was actually happening; we remember the image rather than the real. Perhaps to properly look at something you have to take a step back, away from our fast pace society. The loss of the real in postmodernism and now in the digital era has left artist and photographs wishing to go back to simpler times. New art is often now made up of redundant processes which are older and slower which then sets this new art form apart from the images and photographs we see in everyday media culture. New technologies are being left in favour of older and slower ones which are apparently more real. More traditional and simple methods of photography seemed to be linked to the concept of the real, as they are different from the photographs we see every day on the news and in the media. Hal Foster in his book The Return of the Real says he feels that we have not left postmodernism completely, it has become what is normal to us; we have a postmodernism realism. The consequence of this that we change the way we want reality to be constructed. Foster feels that simply postmodernism has become dà ©modà ©. (Foster 1996)(5) Photography now draws on elements of film, advertisements, postcards etc. to create imagery that is inter-textual and referential to those other pictures, these new images create the realism of this visually mediated culture; post-modern realism is now the normal. Along with the development of photography, video and film also began to expand and change. Photography was the only way of stopping time, a photograph was a moment captured in time on film forever. Now a freeze frame like that can come from any number of sources. Photographs began to be pulled from existing moving images a video. This is achievable by anyone as DVDs or VHSs or even live television can be paused, creating a freeze frame a moment, captured in time. What was once the sole privilege and product of the photograph is now equally likely to be the result of a cinema or video freeze-frame (Bate 2004)(6) This has changed photography, as now instead of the image being of an actual event, they were now selected from the way the event had already been interpreted. Newspapers and news channels were no longer using photographers to capture the perfect picture; they were using video and selecting the image from the video. This is called second order realism. Selecting the decisive moment is still dependant on a person knowing when to push a button, but is now selecting a still from an already decided and produced moving image. A photograph is supposed to be a moment locked in time but now it is more often than not pulled out of an image bank full of video freeze-frames. Film and video has stolen what makes photography special the decisive moment. Therefore the specificity and specialness of photography has to find itself in some other attribute of photography. Chapter 2 How does the media shape our world and the concept of real? Mass media is a huge part of our lives today, and has to influence us in some way. Images have become our reality due to the media. A news story would not impact without an image, and as soon as an image is shown it is a reality and remembers as if the viewer was at the event themselves. Guy Debord in Comments on the Society of the Spectacle talks about how developments in photographs and mass media have contributed to what Debord describes as the society of the spectacle. In the spectacular world images and representations become our reality and everything exists as and for images. Real-life experiences become repressed and events take place in a mediated, pseudo-reality. Experience, events, and even our emotions, both on an individual and public scale are heavily mediated. Where images refer to one another endlessly the originality and authenticity of them are abolished. As a result of this, it is claimed we have lost any relation to the real. The spectacle has now spread itself to the point where it now permeates all reality (Debord 1988) (7) Victor Burgin studied people who believed that media events were their own memories in Possessive, Pensive and Possessed. Sociologists at the University of Provence found that people can become confused and merge their own personal memories with memories from scenes of films or other media productions. I saw at the cinema would simply become I saw. (Burgin 2006)(8) This is called a screen memory, where you remember something from a film instead of from real life. It is in place of and conceals a similar suppressed memory. In the past, big events did happen but people knew less about them as there was no type of media production to let them know. It rarely went beyond those involved. Now because of media we all know about every event, and add these events to our memories, even though we have not actually physically experienced them. We forget our real experiences and replace them with events from the media. For example, the 9/11 terrorist attacks in New York City will be remember by everyone worldwide, but only a small number of people actually experienced and saw the event, but everyone will remember the event and visualise it from the images they saw. When thinking of these terrorist attacks many people will think of this and many other images which were taken at the event. These images will be in their memory as if they were in New York City on that day, meaning they remember events from a media production which has now become their own memory which relates back to Burgins study into screen memories. Our reaction to big events such as the 9/11 terrorist attacks is to experience and re-live the event through the images which are presented to us. Thomas De Zengotita talks of how there is a bubble of mediated representation which he calls the blob. In the world of the blob, momentous catastrophes such as the 9/11 terrorist attacks are almost poignant enough to burst the bubble, Something like that will feel as if it might be sharp enough, as if it might pierce the membrane and slice the pulp. (De Zengotita 2007)(9) With the developments in digital photography and manipulation we can find that we re-live and experience events that did not even happen. We look at a manipulated image, take it to be the truth and believe what is in there. The media can now influence us to believe something that is not true. Once we have seen the images, manipulated or not it is not surprising that our reaction is to experience and re-live the event through those images, adding them to our bank of mediated events in our memory. In other words, it all becomes part of the spectacle. Conclusion In this dissertation I have looked into postmodernism within photography and how this has changed what is the real and how the media influence the real and our emotions and shapes our world today. The rise in postmodernism meant a no-ending reference for every photograph, film etc. On photograph refers to another photograph which refers to a video, which in turn refers another photograph and so on. There was nothing new; post modernism was the end of the new. This results in a loss of the real, a loss of just purely descriptive photography. This loss of the real within photography is only enhanced by developments in photography making it accessible to everyone meaning the value of a photograph and photography is not as high. Which in turn is was not helped by the development in video and film, anyone being able to create a freeze-frame, a moment trapped in time by pausing their DVD, VHS or live TV player. Photography has lost what was special about it the decisive moment. Therefore, older more traditional photographic methods have begun to be used again, in a search for the real within photography. Furthermore, the media document every event and present their interpretation of this event to people in images. People experience and re-live that event through the images the media presented to us, and add those images into their own memories even though they did not actually experience the event themselves. This leads to losing what we know as reality. In my opinion, postmodernism and the no-ending reference meant that we are now always looking for analysis of a photograph and a reason and reference behind it. We cannot appreciate the beauty of a photograph if we are looking for something else within it, and that is where and why we end up losing a sense of the real. Developments in photography and film also have not helped with this, and a limit on the amount of photographs we take would mean the images can assist our memory not be our memory. This sense of the r eal is not lost, but could be forgotten within photography, and taking a step back just to look at a photograph as a whole would bring back the real into that photograph. References Postmodernist culture enjoyed this play with signs of never ending reference, where the more you played the less anyone seemed to know what reality it was touching (Bate 2004) In short: here is a picture from a film, but I am not going to tell you which one, a message complicated by the fact that the photographs were not actual films stills. (Bate2004) But the fear about post-modern culture was that there no longer an anchor to reality at all, that reality had disappeared into an endless chain of other representations. (Bate 2004) Yet despite the idea that these mobile technologies bring us all closer to each other, we are caught up in a contradiction, since they increasingly mediatise our relationships to one another. To look at something it has to be kept at a distance. (Bate 2004) Postmodernism has become dà ©modà ©. (Foster 1996) What was once the sole privilege and product of the photograph is now equally likely to be the result of a cinema or video freeze-frame (Bate 2004) The spectacle has now spread itself to the point where it now permeates all reality (Debord 1988) I saw at the cinema would simply become I saw. (Burgin 2006) Something like that will feel as if it might be sharp enough, as if it might pierce the membrane and slice the pulp. (De Zengotita 2007) Bibliography Books FOSTER H; The Return of The Real; The Avant-Garde at the End of The Century; 1996 DEBORD G; Comments on the Society of the Spectacle; 1988 DE ZENGOTITA T; Mediated: How The Media Shape Your World; 2007 Essays BATE D; After Thought, Source 40: 30-33; Belfast: Photo Works; 2004 BATE D; After Thought II, Source 41: 34-39; Belfast: Photo Works; 2004 BURGIN V; Possessive, Pensive and Possessed; The Cinematic, London, Whitechapel Ventures Ltd 2007 Websites http://www.esquire.com/features/ESQ0903-SEP_FALLINGMAN http://www.justinpartyka.com http://www.cindysherman.com/index.php http://www.lensculture.com/bate1.html